run measure searchlight¶
- run_up:
run_measure_searchlight
%% Searchlight using a data measure
%
% Using cosmo_searchlight, run cross-validation with nearest neighbor
% classifier
%
% # For CoSMoMVPA's copyright information and license terms, #
% # see the COPYING file distributed with CoSMoMVPA. #
%% Define data
config = cosmo_config();
data_path = fullfile(config.tutorial_data_path, 'ak6', 's01');
targets = repmat(1:6, 1, 10);
chunks = floor(((1:60) - 1) / 6) + 1;
ds = cosmo_fmri_dataset(fullfile(data_path, 'glm_T_stats_perrun.nii'), ...
'mask', fullfile(data_path, 'brain_mask.nii'), ...
'targets', targets, 'chunks', chunks);
%% Set measure
% Use the cosmo_cross_validation_measure and set its parameters
% (classifier and partitions) in a measure_args struct.
measure = @cosmo_crossvalidation_measure;
measure_args = struct();
measure_args.classifier = @cosmo_classify_lda;
measure_args.partitions = cosmo_oddeven_partitioner(ds);
%% Define neighborhood
radius = 3; % 3 voxels
% define a neighborhood using cosmo_spherical_neighborhood
nbrhood = cosmo_spherical_neighborhood(ds, 'radius', radius);
% show a histogram of the number of voxels in each searchlight
count = cellfun(@numel, nbrhood.neighbors);
hist(count, 100);
%%
%% Run the searchlight
% hint: use cosmo_searchlight with the measure, args and nbrhood
results = cosmo_searchlight(ds, nbrhood, measure, measure_args);
% the following command would store the results to disk:
% >> cosmo_map2fmri(results, [data_path 'measure_searchlight.nii']);
%% Make a histogram of classification accuracies
figure();
hist(results.samples, 47);
%% Plot a map
figure();
cosmo_plot_slices(results);